Matt Aslett's Analyst Perspectives

Oracle Positions to Address Any and All Data Platform Needs

Posted by Matt Aslett on May 5, 2022 3:00:00 AM

I recently described how the operational data platforms sector is in a state of flux. There are multiple trends at play, including the increasing need for hybrid and multicloud data platforms, the evolution of NoSQL database functionality and applicable use-cases, and the drivers for hybrid data processing. The past decade has seen significant change in the emergence of new vendors, data models and architectures as well as new deployment and consumption approaches. As organizations adopted strategies to address these new options, a few things remained constant – one being the influence and importance of Oracle. The company’s database business continues to be a core focus of innovation, evolution and differentiation, even as it expanded its portfolio to address cloud applications and infrastructure.

Read More

Topics: Analytics, Business Intelligence, Data Integration, Data, AI and Machine Learning, data platforms

Hybrid Data Processing Use Cases

Posted by Matt Aslett on Feb 11, 2022 3:00:00 AM

I recently described how the data platforms landscape will remain divided between analytic and operational workloads for the foreseeable future. Analytic data platforms are designed to store, manage, process and analyze data, enabling organizations to maximize data to operate with greater efficiency, while operational data platforms are designed to store, manage and process data to support worker-, customer- and partner-facing operational applications. At the same time, however, we see increased demand for intelligent applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. The need for real-time interactivity means that these applications cannot be served by traditional processes that rely on the batch extraction, transformation and loading of data from operational data platforms into analytic data platforms for analysis. Instead, they rely on analysis of data in the operational data platform itself via hybrid data processing capabilities to accelerate worker decision-making or improve customer experience.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data, Digital Technology, AI and Machine Learning, data platforms, Analytics & Data, Streaming Data & Events, Natural Data

AWS Cloud Data Platform Services Expand Workload Placement Options

Posted by Matt Aslett on Jan 19, 2022 3:00:00 AM

Few trends have had a bigger impact on the data platforms landscape than the emergence of cloud computing. The adoption of cloud computing infrastructure as an alternative to on-premises datacenters has resulted in significant workloads being migrated to the cloud, displacing traditional server and storage vendors. Almost one-half (49%) of respondents to Ventana Research’s Analytics and Data Benchmark Research currently use cloud computing products for analytics and data, and a further one-quarter plan to do so. In addition to deploying data workloads on cloud infrastructure, many organizations have also adopted cloud data and analytics services offered by the same cloud providers, displacing traditional data platform vendors. Organizations now have greater choice in relation to potential products and providers for data and analytics workloads, but also need to think about integrating services offered by cloud providers with established technology and processes. Having pioneered the concept, Amazon Web Services has arguably benefitted more than most from adoption of cloud computing, and is also in the process of expanding and adjusting its portfolio to alleviate challenges and encourage even greater adoption.

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data

Hydroanalytic Data Platforms Power Data Lakes’ Strategic Value

Posted by Matt Aslett on Dec 23, 2021 3:00:00 AM

Data lakes have enormous potential as a source of business intelligence. However, many early adopters of data lakes have found that simply storing large amounts of data in a data lake environment is not enough to generate business intelligence from that data. Similarly, lakes and reservoirs have enormous potential as sources of energy. However, simply storing large amounts of water in a lake is not enough to generate energy from that water. A hydroelectric power station is required to harness and unleash the power-generating potential of a lake or reservoir, utilizing a combination of turbines, generators and transformers to convert the energy of the flowing water into electricity. A hydroanalytic data platform, the data equivalent of a hydroelectric power station, is required to harness and unleash the intelligence-generating potential of a data lake.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data Governance, Data Integration, Data, Digital Technology, data lakes, AI and Machine Learning, data operations, data platforms

Data Platforms Landscape Divided Between Analytic and Operational

Posted by Matt Aslett on Dec 14, 2021 3:00:00 AM

As I noted when joining Ventana Research, the range of options faced by organizations in relation to data processing and analytics can be bewildering. When it comes to data platforms, however, there is one fundamental consideration that comes before all others: Is the workload primarily operational or analytic? Although most database products can be used for operational or analytic workloads, the market has been segmented between products targeting operational workloads, and those targeting analytic workloads for almost as long as there has been a database market.

Read More

Topics: Analytics, Business Intelligence, Data, data lakes, AI and Machine Learning, data operations, data platforms

Content not found