Streaming data has been part of the industry landscape for decades but has largely been focused on niche applications in segments with the highest real-time data processing and analytics performance requirements, such as financial services and telecommunications. As demand for real-time interactive applications becomes more pervasive, streaming data is becoming a more mainstream pursuit, aided by the proliferation of open-source streaming data and event technologies, which have lowered the cost and technical barriers to developing new applications that take advantage of data in motion. Ventana Research’s Streaming Data Dynamic Insights enables an organization to assess its relative maturity in achieving value from streaming data. I assert that by 2024, more than one-half of all organizations’ standard information architectures will include streaming data and event processing, allowing organizations to be more responsive and provide better customer experiences.
DataStax Provides a Platform for Data in Motion and at Rest
Topics: Data, Streaming Analytics, Streaming Data & Events, operational data plaftforms
When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a somewhat vague concept without clear definition. We know data-driven organizations when we see them — the likes of Airbnb, DoorDash, ING Bank, Netflix, Spotify, and Uber are often cited as examples — but it is not necessarily clear what separates the data-driven from the rest. Data has been used in decision-making processes for thousands of years, and no business operates without some form of data processing and analytics. As such, although many organizations may aspire to be more data-driven, identifying and defining the steps required to achieve that goal are not necessarily easy. In this Analyst Perspective, I will outline the four key traits that I believe are required for a company to be considered data-driven.
Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, natural language processing, data lakes, AI and Machine Learning, data operations, Streaming Analytics, digital business, data platforms, Analytics & Data, Streaming Data & Events
TigerGraph Promotes Graph Database for Data Science with ML Workbench
I recently wrote about the growing range of use cases for which NoSQL databases can be considered, given increased breadth and depth of functionality available from providers of the various non-relational data platforms. As I noted, one category of NoSQL databases — graph databases — are inherently suitable for use cases that rely on relationships, such as social media, fraud detection and recommendation engines, since the graph data model represents the entities and values and also the relationships between them. The native representation of relationships can also be significant in surfacing “features” for use in machine learning modeling. There has been a concerted effort in recent years by graph database providers, including TigerGraph, to encourage and facilitate the use of graph databases by data scientists to support the development, testing and deployment of machine learning models.
Topics: business intelligence, Analytics, Cloud Computing, Data, Digital Technology, AI and Machine Learning, data platforms, Analytics & Data