Matt Aslett's Analyst Perspectives

Dremio Embraces Data Lakehouse with Cloud Launch

Posted by Matt Aslett on Jun 24, 2022 3:00:00 AM

I previously explained how the data lakehouse is one of two primary approaches being adopted to deliver what I have called a hydroanalytic data platform. Hydroanalytics involves the combination of data warehouse and data lake functionality to enable and accelerate analysis of data in cloud storage services. The term data lakehouse has been rapidly adopted by several vendors in recent years to describe an environment in which data warehousing functionality is integrated into the data lake environment, rather than coexisting alongside. One of the vendors that has embraced the data lakehouse concept and terminology is Dremio, which recently launched the general availability of its Dremio Cloud data lakehouse platform.

Read More

Topics: Analytics, Business Intelligence, Data, data lakes, data platforms

MariaDB Offers One Database for All Workloads

Posted by Matt Aslett on Jun 14, 2022 3:00:00 AM

As I recently described, it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads, albeit with growing demand for hybrid data processing use-cases and functionality. Specialist operational and analytic data platforms have historically been the since preferred option, but there have always been general-purpose databases that could be used for both analytic and operational workloads, with tuning and extensions to meet the specific requirements of each.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data platforms, Analytics & Data

Disentangling and Demystifying Data Mesh and Data Fabric

Posted by Matt Aslett on Jun 2, 2022 3:00:00 AM

I recently wrote about the potential benefits of data mesh. As I noted, data mesh is not a product that can be acquired, or even a technical architecture that can be built. It’s an organizational and cultural approach to data ownership, access and governance. While the concept of data mesh is agnostic to the technology used to implement it, technology is clearly an enabler for data mesh. For many organizations, new technological investment and evolution will be required to facilitate adoption of data mesh. Meanwhile, the concept of the data fabric, a technology-driven approach to managing and governing data across distributed environments, is rising in popularity. Although I previously touched on some of the technologies that might be applicable to data mesh, it is worth diving deeper into the data architecture implications of data mesh, and the potential overlap with data fabric.

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, AI and Machine Learning, data operations, data platforms, Streaming Data & Events

SingleStore Positions Hybrid Data Processing for Data Intensity

Posted by Matt Aslett on May 25, 2022 3:00:00 AM

I recently described the use cases driving interest in hybrid data processing capabilities that enable analysis of data in an operational data platform without impacting operational application performance or requiring data to be extracted to an external analytic data platform. Hybrid data processing functionality is becoming increasingly attractive to aid the development of intelligent applications infused with personalization and artificial intelligence-driven recommendations. These applications can be used to improve customer service; engagement, detect and prevent fraud; and increase operational efficiency. Several database providers now offer hybrid data processing capabilities to support these application requirements. One of the vendors addressing this opportunity is SingleStore.

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, AI and Machine Learning, data platforms, Analytics & Data

Are Serverless Databases the Best Fit for Your Organization?

Posted by Matt Aslett on May 18, 2022 3:00:00 AM

The server is a key component of enterprise computing, providing the functional compute resources required to support software applications. Historically, the server was so fundamentally important that it – along with the processor, or processor core – was also a definitional unit by which software was measured, priced and sold. That changed with the advent of cloud-based service delivery and consumption models.

Read More

Topics: Data, Digital Technology, digital business, data platforms, Analytics & Data

Yugabyte Targets Developers to Accelerate Distributed SQL Database Adoption

Posted by Matt Aslett on May 11, 2022 3:00:00 AM

Over a decade ago, I coined the term NewSQL to describe the new breed of horizontally scalable, relational database products. The term was adopted by a variety of vendors that sought to combine the transactional consistency of the relational database model with elastic, cloud-native scalability. Many of the early NewSQL vendors struggled to gain traction, however, and were either acquired or ceased operations before they could make an impact in the crowded operational data platforms market. Nonetheless, the potential benefits of data platforms that span both on-premises and cloud resources remain. As I recently noted, many of the new operational database vendors have now adopted the term “distributed SQL” to describe their offerings. In addition to new terminology, a key trend that separates distributed SQL vendors from the NewSQL providers that preceded them is a greater focus on developers, laying the foundation for the next generation of applications that will depend on horizontally scalable, relational-database functionality. Yugabyte is a case in point.

Read More

Topics: Business Continuity, Cloud Computing, Data, Digital Technology, digital business, data platforms, Analytics & Data

Oracle Positions to Address Any and All Data Platform Needs

Posted by Matt Aslett on May 5, 2022 3:00:00 AM

I recently described how the operational data platforms sector is in a state of flux. There are multiple trends at play, including the increasing need for hybrid and multicloud data platforms, the evolution of NoSQL database functionality and applicable use-cases, and the drivers for hybrid data processing. The past decade has seen significant change in the emergence of new vendors, data models and architectures as well as new deployment and consumption approaches. As organizations adopted strategies to address these new options, a few things remained constant – one being the influence and importance of Oracle. The company’s database business continues to be a core focus of innovation, evolution and differentiation, even as it expanded its portfolio to address cloud applications and infrastructure.

Read More

Topics: Analytics, Business Intelligence, Data Integration, Data, AI and Machine Learning, data platforms

Real-Time Data Processing Requires More Agile Data Pipelines

Posted by Matt Aslett on Apr 26, 2022 3:00:00 AM

I recently wrote about the importance of data pipelines and the role they play in transporting data between the stages of data processing and analytics. Healthy data pipelines are necessary to ensure data is integrated and processed in the sequence required to generate business intelligence. The concept of the data pipeline is nothing new of course, but it is becoming increasingly important as organizations adapt data management processes to be more data driven.

Read More

Topics: business intelligence, Analytics, Data Governance, Data Integration, Data, Digital Technology, Digital transformation, data lakes, AI and Machine Learning, data operations, digital business, data platforms, Analytics & Data, Streaming Data & Events

Regional Attitudes to Data Governance and Regulatory Compliance

Posted by Matt Aslett on Apr 20, 2022 3:00:00 AM

Data governance is an issue that impacts all organizations large and small, new and old, in every industry, and every region of the world. Data governance ensures that an organization’s data can be cataloged, trusted and protected, improving business processes to accelerate analytics initiatives and support compliance with regulatory requirements. Not all data governance initiatives will be driven by regulatory compliance; however, the risk of falling foul of privacy (and human rights) laws ensures that regulatory compliance influences data-processing requirements and all data governance projects. Multinational organizations must be cognizant of the wide variety of regional data security and privacy requirements, not least the European Union’s General Data Protection Regulation (GDPR). The GDPR became enforceable in 2018, protects the privacy of personal or professional data, and carries with it the threat of fines of up to 20 million euros ($22 million) or 4% of a company’s global revenue. Europe is not alone in regulating against the use of personally identifiable information (other similar regulations include The California Consumer Privacy Act) but Ventana Research’s Data Governance Benchmark Research illustrates that there are differing attitudes and approaches to data governance on either side of the Atlantic.

Read More

Topics: Analytics, Data Governance, Data

Starburst Accelerates Analysis of Distributed Data

Posted by Matt Aslett on Apr 12, 2022 3:00:00 AM

I recently described the growing level of interest in data mesh which provides an organizational and cultural approach to data ownership, access and governance that facilitates distributed data processing. As I stated in my Analyst Perspective, data mesh is not a product that can be acquired or even a technical architecture that can be built. Adopting the data mesh approach is dependent on people and process change to overcome traditional reliance on centralized ownership of data and infrastructure and adapt to its principles of domain-oriented ownership, data as a product, self-serve data infrastructure and federated governance. Many organizations will need to make technological changes to facilitate adoption of data mesh, however. Starburst Data is associated with accelerating analysis of data in data lakes but is also one of several vendors aligning their products with data mesh.

Read More

Topics: Business Continuity, business intelligence, Analytics, Data Governance, Data Integration, Data, Digital Technology, data lakes, digital business, data platforms, Analytics & Data

Content not found