Welcome back -

Services for Organizations

Using our research, best practices and expertise, we help you understand how to optimize your business processes using applications, information and technology. We provide advisory, education, and assessment services to rapidly identify and prioritize areas for improvement and perform vendor selection

Consulting & Strategy Sessions

Ventana On Demand

    Services for Investment Firms

    We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

    Consulting & Strategy Sessions

    Ventana On Demand

      Services for Technology Vendors

      We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

      Analyst Relations

      Demand Generation

      Product Marketing

      Market Coverage

      Request a Briefing

        Matt Aslett's Analyst Perspectives

        << Back to Blog Index

        Google Advances Cloud Data Platforms and Analytics Services with GenAI

        The emergence of generative artificial intelligence (GenAI) has significant implications at all levels of the technology stack, not least analytics and data products, which serve to support the development, training and deployment of GenAI models, and also stand to benefit from the advances in automation enabled by GenAI. The intersection of analytics and data and GenAI was a significant focus of the recent Google Cloud Next ’24 event. My colleague David Menninger has already outlined the key announcements from the event as they relate to Google Cloud’s Vertex AI development platform and the Gemini multimodal large language models (LLMs), as well as Gemini-based GenAI assistants. In this perspective, I’ll take a closer look at Google Cloud’s progress as it relates to the company’s various data platforms, as well as the Looker analytics platform.

        Google Cloud has a broad portfolio of data and analytics offerings that spans data storage and processing, data management and data governance, as well as analytics and machine learning (ML). The company has sought to Ventana_Research_ISG_AI_Natural_Language_Analyticsdifferentiate itself from rival cloud providers in recent years by emphasizing its multi-cloud and hybrid architecture credentials, as well as its expertise in relation to data, analytics and AI. That emphasis was reiterated at Google Cloud Next ’24, with the company highlighting the BigQuery analytic data platform, the Looker analytics environment and the AlloyDB for PostgreSQL operational data platform. All three are available on multiple cloud services and were the beneficiaries of new digital assistant capabilities based on Google’s Gemini LLMs, providing new natural language interfaces for analyzing and managing data. Although only 41% of participants in ISG’s AI Buyer Behavior Study are piloting or in production with natural language queries, 88% have seen many or some positive outcomes. Meanwhile 39% of participants are piloting or in production with natural language interpretation of data, of which 87% have seen many or some positive outcomes.

        Google BigQuery is a distributed serverless analytic data platform environment for processing and analyzing large volumes of data. It is now being positioned by Google as a unified data platform that provides multiple data engines — including SQL, Spark and Python — to process data in multiple formats, across multiple locations, for multiple use cases (including business intelligence (BI), as well as AI). In addition to being available on Google Cloud, BigQuery is also available on Amazon Web Services as well as Microsoft Azure via BigQuery Omni, while the BigLake storage engine enables enterprises to work with structured and unstructured data in open table formats, including Apache Iceberg, Delta and Hudi. Among the announcements at this year’s Google Cloud Next event was the preview release of Apache Kafka for BigQuery and the incorporation of enhanced search capabilities, courtesy of Google Dataplex’s unified metadata catalog.

        Also new is direct access from BigQuery to Google’s Vertex AI development platform for AI, enabling vector search and retrieval augmented generation to ground the output of GenAI models with enterprise data, as well as the ability to fine-tune models in Vertex AI from BigQuery. In addition to using BigQuery to deliver and improve GenAI, enterprises can now also use GenAI to improve the use of BigQuery thanks to the introduction of Gemini in BigQuery and BigQuery data canvas. Gemini in BigQuery provides GenAI-based assistance for BigQuery users, including augmented data preparation, semantic search-based data exploration, the conversion of natural language queries to SQL or Python code, and recommendations to improve query performance. BigQuery data canvas is a natural language interface for data exploration, curation, preparation, analysis and visualization. Google also announced the general availability of the BigQuery Studio collaborative analytics workspace, which provides a single environment for analyzing data in BigQuery using SQL, Python, Spark or natural language queries.

        Google Cloud also introduced Gemini in Looker and Gemini in Databases. Gemini in Looker provides an interface for natural language conversational analytics using the Looker analytics environment that is grounded by Ventana_Research_2024_Assertion_AnalyticsData_Code_Generation_Conversion_32_Sbusiness data, with definitions provided by the LookML semantic modeling language. I recently noted the increased importance of semantic data modeling to standardize metrics and definitions as more business users begin to interact with and analyze enterprise data using GenAI interfaces. Gemini in Looker includes LookML Assistant, which automatically generates LookML code based on natural language requests. Gemini in Databases provides GenAI functionality to provide assistance for database administrators, including Database Studio for natural language SQL generation, Database Insights to optimize performance based on AI-powered recommendations, Database Center for managing an enterprise’s complete database fleet, and Database Migration Service for automated conversion of code and database schema from Oracle PL/SQL to Google Cloud SQL or AlloyDB for PostgreSQL. First announced in 2022, the fully-managed AlloyDB for PostgreSQL service has quickly become front and center of Google Cloud’s portfolio of operational database services. Available for deployment on premises and on other clouds via AlloyDB Omni, and with support for the development of GenAI applications via AlloyDB AI, the database service has been updated with a new ScaNN index to boost search performance, as well as native support for natural language queries.

        Google Cloud is by no means unique in providing digital assistant capabilities based on GenAI for data and analytics. Indeed, I assert that through 2026, analytics and data software providers will prioritize the delivery of automated code and query generation and conversion capabilities based on GenAI. However, the company is ahead of several of its rivals in terms of the breadth of functionality on offer and the range of products for which AI assistants are available or in preview. Enterprises evaluating databases to support new application development projects, both on premises and in the cloud, should consider Google Cloud BigQuery and AlloyDB for PostgreSQL, as well as Google Cloud’s associated analytics and GenAI-based services.


        Matt Aslett



        Matt Aslett
        Director of Research, Analytics and Data

        Matt Aslett leads the software research and advisory for Analytics and Data at Ventana Research, now part of ISG, covering software that improves the utilization and value of information. His focus areas of expertise and market coverage include analytics, data intelligence, data operations, data platforms, and streaming and events.


        Our Analyst Perspective Policy

        • Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business, industry and technology vendor trends. Each Analyst Perspective presents the view of the analyst who is an established subject matter expert on new developments, business and technology trends, findings from our research, or best practice insights.

          Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@ventanaresearch.com

        View Policy

        Subscribe to Email Updates

        Analyst Perspectives Archive

        See All