About the Analyst
Matt Aslett
Matt leads the expertise in Digital Technology covering applications and technology that improve the readiness and resilience of business and IT operations. His focus areas of expertise and market coverage include: analytics and data, artificial intelligence and machine learning, blockchain, cloud computing, collaborative and conversational computing, extended reality, Internet of Things mobile computing and robotic automation. Matt’s specialization is in operational and analytical use of data and how businesses can modernize their approaches to business to accelerate the value realization of technology investments in support of hybrid and multi-cloud architecture. Matt has been an industry analyst for more than a decade and has pioneered the coverage of emerging data platforms including NoSQL and NewSQL databases, data lakes and cloud-based data processing. He is a graduate of Bournemouth University.
I have previously written about the functional evolution and emerging use cases for NoSQL databases, a category of non-relational databases that first emerged 15 or so years ago and are now well established as potential alternatives to relational databases. NoSQL is a term used to describe a variety of databases that fall into four primary functional categories: key-value stores, wide-column stores, document-oriented databases and graph databases. Each is worthy of further exploration, which is...
Read More
Topics:
Data,
Operational Data Platforms
The publication of Ventana Research’s 2023 Operational Data Platforms Value Index earlier this year highlighted the importance of incorporating analytic processing into operational applications to deliver personalization and recommendations for workers, partners and customers. This importance is being accelerated by interest in generative AI, especially large language models. The emergence of intelligent applications has impacted the requirements for operational data platforms with the need to...
Read More
Topics:
Analytics,
Cloud Computing,
Data,
Digital Technology,
AI Machine Learning,
Analytics & Data,
analytic data platforms,
Operational Data Platforms
Despite best intentions, many organizations still struggle with some fundamental aspects of data processing and analytics. Taking data from operational applications and making it available for analysis is a first step, but data management remains a perennial challenge. Data movement and transformation difficulties can lead to delays and data quality problems that prevent organizations from generating value from data. The inability to govern and integrate data from multiple data sources prevents...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data
Maintaining data quality and trust is a perennial data management challenge, often preventing organizations from operating at the speed of business. Recent years have seen the emergence of data observability as a category of DataOps focused on monitoring the quality and reliability of data used for analytics and governance projects and associated data pipelines. There is clear overlap with data quality, which is more established as both a discipline and product category for improving trust in...
Read More
Topics:
Data Management,
Data,
data operations
Organizations increasingly rely on real-time analytics to make informed decisions and stay competitive in today’s data-driven business landscape. As the complexity of data grows with the continuous addition of diverse sources, customers and workers alike expect real-time responsiveness. Accelerated query performance is crucial to process and extract valuable insights from data in a timely manner. Traditional analytics applications are often insufficient for managing the scale, velocity and...
Read More
Topics:
Data Management,
Data,
data operations,
Streaming Data & Events,
analytic data platforms
I previously explained the arguments in favor of adoption of distributed SQL databases, the new generation of operational data platforms designed to combine the benefits of the relational database model and native support for distributed cloud architecture. It is critical for distributed SQL vendors to engage with developers to ensure they are considering the importance of resilience that spans multiple data centers and/or cloud regions as they choose the databases that will underpin...
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
Analytics & Data,
Operational Data Platforms
Data fabric has grown in popularity as organizations struggle to manage data spread across multiple data centers, systems and applications. By providing a technology-driven approach to automating data management and governance across distributed environments, data fabric is attractive to organizations seeking to simplify and standardize data management. I assert that by 2025, more than 6 in 10 organizations will adopt data fabric technologies to facilitate the management and processing of data...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data,
analytic data platforms
The data and analytics sector rightly places great importance on data quality: Almost two-thirds (64%) of participants in Ventana Research’s Analytics and Data Benchmark Research cite reviewing data for quality and consistency issues as the most time-consuming task in analyzing data. Data and analytics vendors would not recommend that customers use tools known to have data quality problems. It is somewhat surprising, therefore, that data and analytics vendors are rushing to encourage customers...
Read More
Topics:
Analytics,
Data Governance,
Data Management,
Data,
Digital Technology,
natural language processing,
AI Machine Learning,
Analytics & Data
Master data management may not attract the same level of excitement as fashionable topics such as DataOps or Data Platforms, but it remains one of the most significant aspects of an organization’s strategic approach to data management. Having trust in data is critical to the ability of an organization to make data-driven business decisions. Along with data quality, MDM enables organizations to ensure data is accurate, complete and consistent to fulfill operational business objectives.
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations
The data platforms market has traditionally been divided between products specifically designed to support operational or analytic workloads, with other market segments having emerged in recent years for data platforms targeted specifically at data science and machine learning (ML), as well as real-time analytics. More recently, we have seen vendor strategies evolving to provide a more consolidated approach, with data platforms designed to address a combination of analytics and data science, as...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
AI Machine Learning,
Analytics & Data,
analytic data platforms,
Operational Data Platforms